| Home | New | Selection | 
| Syntax | Math | Explanation | 
|---|---|---|
a+b, a-b
 | a+b, a−b | Addition, subtraction. | 
a*b, a/b
 | a⋅b, a/b | Multiplication, division. | 
a^n
 | an | Exponentiation. | 
n!
 | n! | Factorial. | 
abs(x)
 | |x| | Absolute value. | 
a:=b
 | a:=b | Assignment. | 
f(x):=2x
 | f(x):=2x | Function definition. | 
f(x,y):=x*y
 | f(x,y):=x⋅y | Function definition. | 
x.2x
 | x ↦ 2x | Lambda expression. | 
(x,y).x*y
 | (x,y) ↦ x⋅y | Lambda expression. | 
f'(a)
 | f'(a) | Derivative of f at a. | 
f''(a)
 | f''(a) | Second derivative of f at a. | 
if(a,x,y)
 | x if a else y | Conditional expression. | 
a&b
 | a∧b | Conjunction: a and b. | 
a|b
 | a∨b | Disjunction: a or b. | 
a<b, a>b
 | a<b, a>b | Comparison. | 
a<=b, a>=b
 | a≤b, a≥b | Comparison. | 
| Function | Math | Explanation | 
|---|---|---|
diff(x.f(x),a)
 | df(x)/dx|x=a | Derivative of f at a. | 
diff(x.f(x),a,n)
 | (d/dx)n f(x)|x=a | The n-th derivative of f at a. | 
sum(a,b,k.f(k))
 | ∑k∈[a,b] f(k) | Sum. | 
prod(a,b,k.f(k))
 | ∏k∈[a,b] f(k) | Product. | 
int(a,b,x.f(x))
 | ∫[a,b] f(x) dx | Definite integral. | 
inv(f,x,a,b)
 | (f|[a,b])−1(x) | Inverse function of f restricted to [a,b]. | 
pow(f,n,x)
 | fn(x) | The n-th iterate of f. | 
| Constant | Explanation | 
|---|---|
pi
 | Half length of the unit circle. | 
tau
 | Length of the unit circle. | 
e
 | Base of the natural logarithm. | 
deg
 | Degree unit: tau/360.
 | 
gon
 | Gradian unit: tau/400.
 | 
gc
 | Euler-Mascheroni constant (gamma constant). | 
nan
 | Not a number. | 
| Function | Explanation | 
|---|---|
abs(x)
 | Absolute value. | 
sgn(x)
 | Signum. | 
floor(x)
 | Rounded towards minus infinity. | 
ceil(x)
 | Rounded towards plus infinity. | 
rd(x)
 | Rounded towards zero. | 
frac(x)
 | Fractional part. | 
div(x,y)
 | Floor division. | 
mod(x,y)
 | Floor division remainder. | 
diveuc(x,y)
 | Euclidean division. | 
modeuc(x,y)
 | Euclidean division remainder. | 
divtrunc(x,y)
 | Truncating division. | 
modtrunc(x,y)
 | Truncating division remainder. | 
max(x,y)
 | Maximum. | 
min(x,y)
 | Minimum. | 
hypot(x,y)
 | Hypotenuse length: sqrt(x^2+y^2).
 | 
angle(x,y)
 | Phase angle of coordinate vector (x,y). | 
| Function | Explanation | ||||||||
|---|---|---|---|---|---|---|---|---|---|
exp(x)
 | Natural exponential function. | ||||||||
ln(x)
 | Natural logarithm. | ||||||||
lg(x)
 | Common logarithm. | ||||||||
ld(x)
 | Binary logarithm. | ||||||||
lb(x)
 | Binary logarithm. | ||||||||
log(x,b)
 | 
| Function | Explanation | 
|---|---|
sin(x), cos(x), tan(x),
  
 | Trigonometric functions. | 
asin(x), acos(x),
  
 | Inverse trigonometric functions. | 
sinh(x), cosh(x),
  
 | Hyperbolic functions. | 
asinh(x), acosh(x),
  
 | Inverse hyperbolic functions. | 
sinc(x)
 | Cardinal sine: sin(pi*x)/(pi*x).
 | 
| Function | Explanation | 
|---|---|
gamma(x)
 | Gamma function Γ(x). | 
fac(x)
 | Factorial function, i.e. gamma(x+1).
 | 
gamma(a,x)
 | Lower incomplete gamma function γ(a,x). | 
Gamma(a,x)
 | Upper incomplete gamma function Γ(a,x). | 
erf(x)
 | Error function. | 
psi(x)
 | Digamma function ψ(x). | 
psi(n,x)
 | Polygamma function ψn(x). | 
zeta(x)
 | Zeta function ζ(x). | 
| Function | Explanation | 
|---|---|
Ei(x)
 | Exponential integral. | 
En(n,x)
 | Exponential integral En(x). | 
li(x)
 | Integral logarithm. | 
Li(x)
 | Integral logarithm with offset li(2).
 | 
| Function | Explanation | 
|---|---|
agm(x,y)
 | Arithmetic-geometric mean. | 
E(m)
 | Complete elliptic integral E(m), m=k2. | 
K(m)
 | Complete elliptic integral K(m), m=k2. | 
E(phi,m)
 | Elliptic integral E(φ,m), m=k2. | 
F(phi,m)
 | Elliptic integral F(φ,m), m=k2. | 
Pi(phi,n,m)
 | Elliptic integral Π(φ,n,m), m=k2. | 
RF(x,y,z)
 | Carlson symmetric form RF(x,y,z). | 
RJ(x,y,z,p)
 | Carlson symmetric form RJ(x,y,z,p). | 
RC(x,y)
 | Carlson symmetric form RF(x,y,y). | 
RD(x,y,z)
 | Carlson symmetric form RJ(x,y,z,z). | 
| Function | Explanation | 
|---|---|
PP(n,0,x)
 | Legendre polynomial Pn(x). | 
PP(n,a,x)
 | Associated legendre function Pn,a(x). | 
PL(n,0,x)
 | Laguerre polynomial Ln(x). | 
PL(n,a,x)
 | Associated Laguerre polynomial Ln,a(x). | 
PH(n,x)
 | Hermite polynomial Hn(x). | 
PT(n,x)
 | Chebyshev polynomial Tn(x). | 
PU(n,x)
 | Chebyshev polynomial Un(x). | 
| Function | Explanation | 
|---|---|
rand()
 | Random number from interval [0,1]. | 
rand(a,b)
 | Random number from interval [a,b]. | 
rand(a)
 | Randomly pick an element from list a. | 
rand(a:b)
 | Randomly pick an element from [a,a+1,a+2,...,b]. | 
rand(a:b:d)
 | Randomly pick an element from [a,a+d,a+2d,...,b]. | 
af(x0,y0,x1,y1)
 | The affine function through (x0, y0)
  and (x1, y1).
 Example: f:=af(2,1,6,2),f(x).
 | 
tg(f,a,x)
 | Tangent line f(a)+f'(a)*(x-a).
 | 
sc(f,a,b,x)
 | Secant line f(a)+(f(b)-f(a))/(b-a)*(x-a).
 | 
clamp(x,a,b)
 | The same as min(max(x,a),b).
 | 
roots(f)
 | Try to find the zeroes of f(x) for x∈[−100,100]. | 
roots(f,a,b)
 | Try to find the zeroes of f(x) for x∈[a,b]. | 
map(f,a)
 | Apply f to every element of list a.
 Example: map(x.2x,1:10).
 | 
filter(p,a)
 | The elements x in a that fulfill the predicate p.
 Example: filter(k.mod(k,2)=1,1:10).
 | 
P(x,y)
and scale(dx,dy=dx).